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Abstract. The relationship between the Heun class of second-order linear equations and the
Painlev́e second-order nonlinear equations is studied. The symbol of the Heun class equations is
regarded as a quantum Hamiltonian. The independent variable and the differentiation operator
correspond to the canonical variables and one of the parameters of the equation is assumed to
be time. Painlev́e equations appear to be Euler–Lagrange equations related to corresponding
classical motion.

1. Introduction

Two physical theories can be related to a given HamiltonianH(p, q, t) determined as a
function of the canonical variablesq, p and timet . It could either be classical mechanics or
it could be quantum theory. In the first case the classical motion is described by the functions
q(t), p(t)—solutions of the Hamilton system of equations. In the Lagrange formalism one
can study only the functionq(t), regarding it as a solution of the Euler–Lagrange second-
order ordinary differential equation (ODE).

In the second caseq, p are treated as operatorŝq, p̂ acting on the wavefunction
ψ(x, t) which is a solution of the corresponding Schrödinger equation. Classical objects
q̄(t), p̄(t) called observables are calculated as matrix elements ofp̂, q̂ with the givenψ(x, t).
Transforms from a quantum problem to the related classical problem andvice versahave
been widely studied for different concrete Hamiltonians and, consequently, different physical
systems.

Equations with solutions having sufficiently simple characteristics as functions of
complex independent variables are distinguished from the others. Taken as Euler–Lagrange
equations related to appropriate Hamiltonians, the so-called Painlevé equations enjoy the
Painlev́e property. This means that movable singularities of all solutions of these equations
are poles (no movable branching points or essential singularities). Specially chosen solutions
of the Painlev́e equations constitute the class of special functions related to nonlinear
mathematical physics.

On the other hand, the one-dimensional Schrödinger equations can be classified
according to the number and the rank of singularities. The simplest equations constitute
the so-called hypergeometric class of differential equations. Next in complexity comes the
Heun class which arises from the Heun equation characterized by four regular singularities.
Specially chosen solutions of equations belonging either to the hypergeometric class or the
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Heun class constitute the class of special functions related to linear mathematical physics
[4].

The object of this paper is to describe the relationship between the equations belonging
to the Heun class and the corresponding Painlevé equations. This relationship is based on
the existence of common Hamiltonians generating both equations. In the first case it is
regarded as the quantum Hamiltonian and in the second case as the classical one. In this
sense, Painlev́e equations may be called classical analogues of Heun’s equations.

It is already known that every Painlevé equation (nonlinear) is related to linear equations.
Namely, it can be obtained as a compatibility condition of two linear equations [5, 6]. The
first one is the second-order linear equation with singularities, among which one is an
apparent singularity. In the absence of the apparent singularity, this equation pertains to the
Heun class but the presence of the singularity it pertains to the class next in complexity.
The second linear equation is an equation preserving the monodromie of solutions of the
first equation under variations of an appropriate parameter. This fact lays on the basis of
Riemann–Hilbert theory and the so-called method of isomonodromic deformations. The
modern presentation of the problem uses the first-order 2× 2 system, called the Schlesinger
system [7], instead of the original second-order equation.

Our aim is to construct a straightforward relationship between more simple linear
second-order equations (namely of Heun’s class) and Painlevé equations beyond the scope
of the method of isomonodromic deformation purely on the basis of comparison between
quantum and classical dynamics.

We hope that the absence of the Planck constant and imaginary unity in the presentation
of operatorp̂ will not lead to any misunderstanding.

2. Basic definitions

The Heun class of differential equations comprises the Heun equation (second-order linear
homogeneous ODE with four regular singularities) and all equations generated from it by
specialization of parameters or by confluence processes. The presentation of the processes
of confluence for the Fuchsian equations and for the Heun equation in particular has been
described in [1–3]. The process of confluence is controlled by numerical characteristic of
the singularities—theirs-rank. Thes-rank of a regular singularity is equal to unity. The
s-rank is an irregular singularity may be either integer or half-integer. In the first case we
call the singularity unramified. In the second case the singularity is ramified. Equations
with ramified irregular singularities are called ramified. Formula for the evaluation of the
s-rank and the theorem of subadditivity of thes-rank at confluence are given in [3].

The basic Heun equation in the canonical natural form [2] reads

L(1,1,1;1)
z (a, b, c, d; t; σ)y(z)

=
[

D2 +
(
c

z
+ d

z − 1
+ e

z − t

)
D +

(
ab(z − t)− σ

z(z − 1)(z − t)

)]
y(z) = 0

D = d

dz
. (1)

Here 1− c, 1 − d, 1 − e are characteristic exponents of Frobenius-type solutions at the
points z = 0, z = 1, z = ∞, respectively (others are zero) anda, b are corresponding
characteristic exponents at infinity. Since one of the characteristic exponents at all finite
singularities is taken to be equal to zero equation (1) is stated as being in canonical form
[2].
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The characteristic exponents satisfy the Fuchs condition

a + b + 1 = c + d + e. (2)

The set ofs-ranks of the singularities is indicated as the upper index for the differential
operatorL. The same indication will used throughout this paper.

Parameterσ does not influence the major local characteristics of solutions of equation (1)
and is called the accessory parameter.

Equation (1) can be rewritten in terms declared in (12) as

Hy = 1

f (t)
[r3(q, t)p

2 + r2(q, t)p + r1(q, t)]y = λy (3)

with

r1(q, t) = ab(q − t) r2(q, t) = c(q − 1)(q − t)+ dq(q − t)+ eq(q − 1)

r3(q, t) = q(q − 1)(q − t) σ = λt (t − 1) f (t) = t (t − 1)

1 − c = θ1 1 − d = θ2 1 − e = θ3 b − a = θ4 (4)

and z,D substituted forq, p. It is necessary to stress that parametersθj are differences
of characteristic exponents at singularities and therefore they are invariants ofs-homotopic
transformations of the dependent variable and Mœbius transformation of the independent
variable. The normalization of parameterλ is predicted by the fact that

λ = resq=t
σ − r1

r3
(5)

so that the location of the singular point and the residue of the ‘potential’ at this point are
chosen to be canonically adjoint variables related to ‘time’ and ‘energy’.

By Painlev́e equations we mean basically six equations which are denote as

P (6) P (5) P (4) P (3) P (2) P (1)

respectively.
Standard Painlev́e equations in notation (13) are the following [7]:

P (6) : qtt = 1

2

(
1

q
+ 1

q − 1
− 1

q − t

)
q2
t −

(
1

t
+ 1

t − 1
+ 1

q − t

)
qt

+q(q − 1)(q − t)

t2(t − 1)2

(
α + βt

q2
+ γ (t − 1)

(q − 1)2
+ δt (t − 1)

(q − t)2

)
(6)

P (5) : qtt =
(

1

2q
+ 1

q − 1

)
q2
t − 1

t
qt + (q − 1)2

t2

(
αq + β

q

)
− γ q

t
− δq(q + 1)

q − 1
(7)

P (4) : qtt = 1

2q
q2
t + 3

2
q3 + 4tq2 + 2(t2 − α)q + β

q
(8)

P (3) : qtt = 1

q
q2
t − 1

t
qt + 1

t
(αq2 + β)+ γ q3 + δ

q
(9)

P (2) : qtt = q3 + tq + α (10)

P (1) : qtt = 6q2 + t. (11)

It is necessary to stress that ‘in general’ equation (7) contains three arbitrary parameters and
equation (8) two parameters. Under scaling transformations it is always possible to fix one
parameter in (7) and two parameters in (8) unless they are not zeros. The latter case will
be discussed separately below.
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The starting linear ‘quantum’ equation (namely, of the Heun’s class in our consideration)
is taken in the form

H(q, p, t, θj )y(q, t) = λy(q, t). (12)

Hereq is the independent complex variable,p is the differentiation operator overq, θi are
‘local’ parameters exposing local behaviour of the solutions near the singularities,t is a
‘scaling’ parameter andλ is a ‘global’ parameter which usually plays the role of spectral
parameter and in the theory of Heun equations is called the accessory parameter [2]. The
functionH in (12) is supposed to be the quantum Hamiltonian.

For a given equation of Heun type, presentation (12) is by no means unique. We can
always redefine the spectral parameter by multiplication of both sides of (12) by an arbitrary
function g(t, θj ) or by addition of any functiong1(t, θj ) to both sides of (12). Moreover,
equations (12) are usually studied under an equivalence relation originated bys-homotopic
transformations of dependent variabley [2, 3] and isomorphisms of the complex planeq.

For the same Hamiltonian (12), studied as a classical object, one can write Euler–
Lagrange equations of classical motion of the form

qtt = F(q, qt , t, θi). (13)

The main goal of this paper is to prove the following theorem.

Theorem 1. Every Painlev́e equation can be obtained as an Euler–Lagrange equation of
the form (13) generated by the Hamiltonian related to the appropriate linear second-order
equation (12). The latter one belongs to the Heun class.

3. Proof of theorem 1

The first (equation (6)) of the listed Painlevé equations in the frame of comparison between
(12) and (13) is generated by the basic Heun equation (1). The corresponding Lagrangian
reads

L = f

4r3

(
qt − r2

f

)2

− r1

f
. (14)

The following Euler–Lagrange equation results:

qtt = 1

2

∂

∂q
(ln r3)q

2
t −

(
∂

∂t
(ln f )− ∂

∂t
(ln r3)

)
qt + r3

f 2

(
∂

∂q

r2
2

2r3
+ f

∂

∂t

r2

r3
− 2

∂r1

∂q

)
. (15)

This coincides with equation (6) with the following correspondence of local parameters:

α = (c + d + e)2

2
− 2ab β = −c

2

2
γ = d2

2
δ = − (1 − e)2 − 1

2
. (16)

Next comesP (5) generated by the confluent Heun equation. The following comment
is needed in advance. There exist two modifications of the confluent Heun equation which
differ by the s-rank R(z∗) of the irregular singularityz∗. This either holds forR = 2
and normal formal asymptotic solutions can be constructed in the vicinity of this point, or
it holds for R = 3

2 and subnormal formal asymptotic solutions can be constructed in the
vicinity of this point. In the case of the first modification the process of confluence from
(9) is arranged by the following limiting transform,

t 7→ 1 + εt d 7→ 1

ε
+ d e 7→ 1

ε
ε → 0 (17)
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which leads to coalescence of the regular singularitiesz = t and z = 1 into an irregular
singularityz = 1. The resulting equation reads

L(1,1,2)z (c, d; a, t; σ)y(z) = (z(z − 1)2D2 + (tz + c(z − 1)2

+dz(z − 1))D + (ab(z − 1)− σ))y(z) = 0. (18)

The corresponding Hamiltonian in form (3) is determined by

r1(q, t) = ab(q − 1) r2(q, t) = c(q − 1)2 + dq(q − 1)− tq

r3(q, t) = q(q − 1)2 σ = λt f (t) = t. (19)

The Euler–Lagrange equation related to this Hamiltonian coincides with (1) with the
following relationship between the parameters

α = (c + d)2

2
− 2ab β = −c

2

2
γ = d2

2
δ = −1. (20)

If it holds δ 6= 0, then by scaling the dependent variable in (7) this parameter can be always
made equal to unity. Hence we get what is needed. In order to study the caseδ = 0 the
ramified confluent Heun equation (RCHE) with irregular singularity atz = 1 characterized
by s-rankR = 3

2 can be chosen as a starting equation:

L(1,1;3/2)
z (c, d; t; σ)y(z) = (z(z − 1)2D2 − (c(z − 1)+ dz(z − 1))D

+(−tz/(z − 1)− σ))y(z) = 0. (21)

The corresponding Euler–Lagrange equation isP (5) with

α = d2

2
β = −c

2

2
γ = 2 δ = 0. (22)

Further scaling transformations of the dependent variable can make parameterγ arbitrary.
If three regular singularities in Heun equation (1) coalesce at infinity the resulting

equation is called the biconfluent Heun equation (BHE). In the canonical form it reads

L(1;3)
z (c; a, t, σ )y(z) = (zD2 + (−z2 − tz + c)D + (−az − σ))y(z) = 0. (23)

The Hamiltonian is determined by

r3(q, t) = q r2(q, t) = c − tq − q2 r1(q, t) = −aq
σ = λ f (t) = 1 (24)

and leads to the following Euler–Lagrange equation:

qtt = q2
t

2q
+ 3

2
q3 + 2tq2 +

(
t2

2
− c + 2a

)
q − c2

2q
. (25)

Equation (25) under scaling ofq and t can be transformed toP (4) in form (8).
The triconfluent Heun equation (THE) has only one irregular singularity which lays at

infinity. THE is originated by a confluence process from equation (1). It reads

L(;4)z (a, t; λ)y(z) = (D2 + (−z2 − t)D + (−az − λ))y(z) = 0. (26)

Under the procedure defined above one obtains a Euler–Lagrange equation in the form

qtt = 2q3 + 2tq + 2a (27)

which is equivalent toP (2) after appropriate scaling. The Painlevé equationP (1) origins
from the ramified triconfluent Heun equation

L(7/2)z (t; λ)y(z) = (D2 + (−z3 − tz − λ))y(z) = 0 (28)
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where the singularity at infinity is characterized not by thes-rankR = 4 as in (26) but by
the s-rankR = 7

2. The corresponding Euler–Lagrange equation is

qtt = 6q2 + t. (29)

The equation that gives some problems isP (3). First we transformP (3) to P̃ (3)

P̃ (3) : qtt = 1

q
q2
t − 1

t
qt + 1

t2
(αq2 + γ q3)+ β

t
+ δ

q
(30)

with the help of the substitution

t 7→ √
t q 7→ q√

t
. (31)

Equation P̃ (3) fits more to the confluence process and, of course, enjoys the Painlevé
property. The double-confluent Heun equation (DHE) origins from the Heun equation (1)
when two regular singularities coalesce at zero and two others coalesce at infinity. It reads

L(2;2)
z (a, c, t; σ)y(z) = (z2D2 + (−z2 + cz − t)D + (−az − σ))y(z) = 0. (32)

The corresponding Hamiltonian

H = 1

t
(q2p2 + (−q2 + cq + t)p − aq) (33)

leads to the Euler–Lagrange equation of the form

qtt = 1

q
q2
t − 1

t
qt + q2

t2
(2a − c)− c + 1

t
+ 1

q
+ q3

t2
. (34)

The case of zero coefficients,P (3) is treated once again by turning to the ramified equations
with half-integers-ranks. One of them can be written in the form

L(3/2;2)
z (a, t; σ)y(z) = (z2D2 − z2D + (−az − σ − t/z))y(z) = 0 (35)

resulting inP (3) with

α = 2a β = −2 γ = 1 δ = 0. (36)

The final possibility is to take an equation

L(3/2;3/2)
z (t; σ)y(z) = (z2D2 + (−z + σ − t/z))y(z) = 0 (37)

where two singularities are characterized by thes-rank R = 3
2 in order to satisfyγ = 0.

Scaling transformations afford an arbitrariness of the two parameters that remain. This
completes the proof of theorem 1. �

4. Discussion

From the point of view of the Heun class, the arrangement of Poincare equations seems to
be not sufficiently satisfactory. In order to achieve better agreement between two classes
of equations it is necessary to:

(i) interchange the singularities ofP (5) at q = 1 andq = ∞;
(ii) substituteP (3) for P̃ (3);
(iii) excludeP (1) as a separate equation and study it as a special reduction ofP (2).
Moreover, there is no Painlevé equation related to the ramified biconfluent Heun equation

with thes-rank of the singularity at infinityR = 5
2. This prevents formulation of the theorem

which would be inverse to theorem 1. It also presents the possibility that the list of Painlevé
equations is not complete.
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A further problem that could be studied is how the matrix elements—observables—for
solutions of the Heun equation are related to solutions of Painlevé equations. A solution of
this problem can give new approaches to the investigation of the asymptotics of nonlinear
equations.
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